
Evaluating Diffusion and Aging Mechanisms in Blending of New and Age-Hardened **Binders during Mixing and Paving**

Introduction

- A number of studies have demonstrated that RAP does not behave as "black rock", but rather the RAP binder blends appreciably with virgin binder, ultimately producing a composite binder that will influence pavement performance, especially when the mix contains a high RAP percentage (more than 25%).
- It is important to understand the mechanisms of blending and its evolution during mix production and paving.

Objective

Investigate the extent of blending between virgin and **RAP binders during mixing through compaction.**

This was achieved through the following tasks:

- \checkmark Development of a testing protocol for preparation, conditioning, and testing of wafer composite binder specimens using a DSR.
- Testing wafer specimens conditioned at different stages over HMA and WMA time-temperature paths with a DSR.
- Modeling the blending of new and RAP binders based on diffusion law and considering aging.
- ✓ Prediction of representative diffusion and aging coefficients for composite binders based on comparing the estimated and measured values of shear modulus (G*).

Yuan He, Zia Alavi, John Harvey, and David Jones Paper No. 16- 4454

Materials, Sample Preparation, and Testing

□ New Binder: PG 58-22

Age-Hardened Binder: PG87

(produced with aging of a PG64 binder in PAV for 60 hrs. at 100°C with 2.1MPa air pressure)

Wafer binder specimen preparation and testing validation

binder disc (cross sectional

e. two-layer sample before oven conditioning

f. two-layer sample after over

conditioning

Conditioning times and temperatures

Test]	15			-	
G* (kPa) [Regular DSR Test]	10				
) [Regu					
G* (kPa	5	I	Line of E	quality	
	0	511 [Wafer sp o		5 SR Test]	20
	90			/	7
[est]	85				
δ (°) [Regular DSR Test]	80	 			
[Regul	75				
ð ("	70	l	_ine of Ec	quality	

Phase	Level of Conditioning			
Pliase	НМА	WMA		
Start Mixing	no conditioning	no conditioning		
After Mixing	0.05hr at 150°C	0.05hr at 130°C		
Silo+Trans_1	0.05hr at 150°C + 0.5hr at 140°C	0.05hr at 130°C + 0.5hr at 120°C		
Silo+Trans_2	0.05hr at 150°C + 1hr at 140°C	0.05hr at 130°C + 1hr at 120°C		
Start Paving	0.05hr at 150°C + 2hr at 140°C	0.05hr at 130°C + 2hr at 120°C		
Finish	0.05hr at 150°C + 2hr at 140°C +	0.05hr at 130°C + 2hr at 120°C +		
Compaction	0.5hr at 135°C	0.5hr at 115°C		

Blending Mechanism

- The change in rheological properties of wafer composite binders can be explained through the diffusion mechanism over time.
- The diffusion process involves transferring new binder molecules from regions of higher concentration to regions of lower concentration, without requiring bulk motion.
- The concentration of new binder in the RAP binder film around the aggregate increases as a function of time until equilibrium is achieved.

 $\frac{1}{\partial z}|_{z=2L} =$

Modeling of the Blending Mechanism

$$\frac{\partial C}{\partial t} = \mathbf{D} \frac{\partial^2 C}{\partial z^2}$$

Where:

D is the diffusion coeff. in m^2/sec

C is the concentration in percentage

z is the position in m

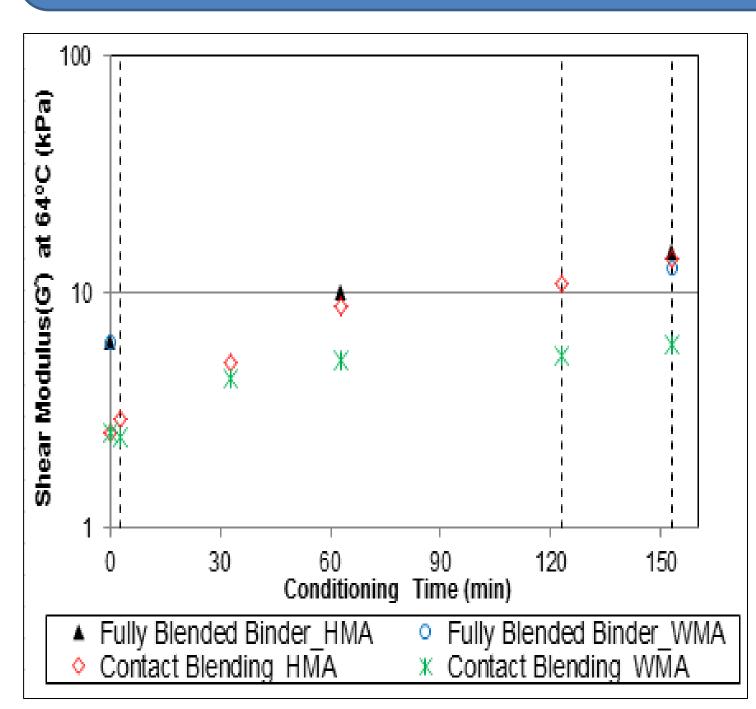
t is time in sec.

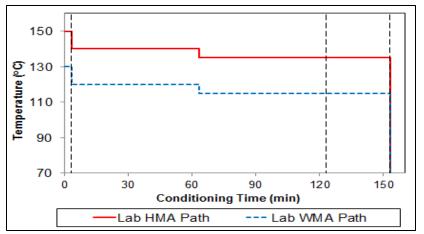
 $\frac{2L}{G_{diffusion}^*(t)} = \sum_{i=1}^n \frac{n_i}{G^*(i,t)}$

$$G^* = \frac{G^*_{simulated RAP}^{C} \times G^*_{New}}{G^*_{New}^{C}}$$

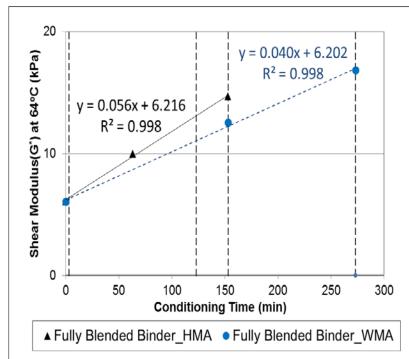
Fresh Binder

Incorporating aging effect during blending

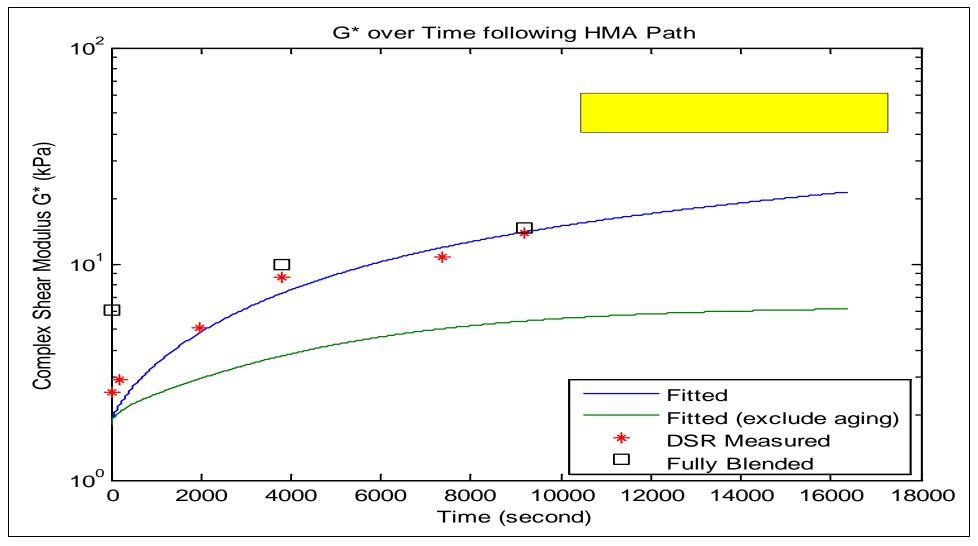

$$G^*_{predicted} = G^*_{diffusion} + C \times t$$

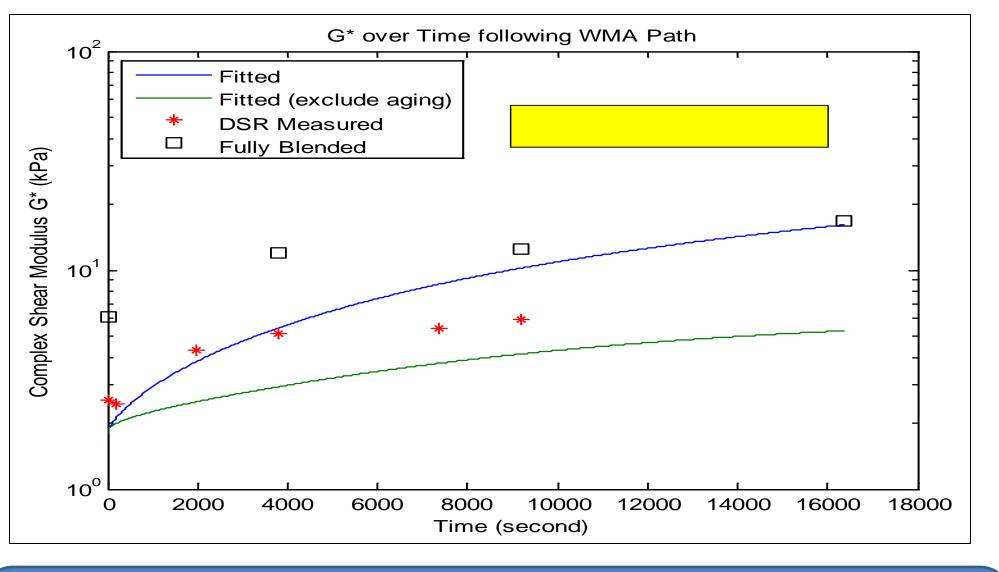

Where:

C is the aging coefficient, and


t is the conditioning time.

Evolution of Binder Rheological Properties




Determining aging coefficients

HMA production path

WMA production path

Summary and Conclusions

- The DSR wafer composite binder testing method was shown to be an effective approach for examining the level of blending between new and age-hardened binders.
- The diffusion mechanism in the blending process was shown to be temperature and time dependent.
- The diffusion coefficient increased with temperature.
- It is recommended that the DSR wafer method be standardized. refined and is also further lt recommended that the method be used to evaluate the effect of different WMA technologies and/or rejuvenating agents on blending between new and RAP binders, and potentially to develop test methods and specifications.